Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.891
Filtrar
1.
BMC Genomics ; 25(1): 395, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649810

RESUMO

The testes are the organs of gamete production and testosterone synthesis. Up to date, no model system is available for mammalian testicular development, and only few studies have characterized the mouse testis transcriptome from no more than three postnatal ages. To describe the transcriptome landscape of the developing mouse testis and identify the potential molecular mechanisms underlying testis maturation, we examined multiple RNA-seq data of mouse testes from 3-week-old (puberty) to 11-week-old (adult). Sperm cells appeared as expected in 5-week-old mouse testis, suggesting the proper sample collection. The principal components analysis revealed the genes from 3w to 4w clustered away from other timepoints, indicating they may be the important nodes for testicular development. The pairwise comparisons at two adjacent timepoints identified 7,612 differentially expressed genes (DEGs), resulting in 58 unique mRNA expression patterns. Enrichment analysis identified functions in tissue morphogenesis (3-4w), regulation of peptidase activity (4-5w), spermatogenesis (7-8w), and antigen processing (10-11w), suggesting distinct functions in different developmental periods. 50 hub genes and 10 gene cluster modules were identified in the testis maturation process by protein-protein interaction (PPI) network analysis, and the miRNA-lncRNA-mRNA, miRNA-circRNA-mRNA and miRNA-circRNA-lncRNA-mRNA competing endogenous RNA (ceRNA) networks were constructed. The results suggest that testis maturation is a complex developmental process modulated by various molecules, and that some potential RNA-RNA interactions may be involved in specific developmental stages. In summary, this study provides an update on the molecular basis of testis development, which may help to understand the molecular mechanisms of mouse testis development and provide guidance for mouse reproduction.


Assuntos
Perfilação da Expressão Gênica , Testículo , Animais , Masculino , Testículo/metabolismo , Testículo/crescimento & desenvolvimento , Camundongos , Regulação da Expressão Gênica no Desenvolvimento , Transcriptoma , Redes Reguladoras de Genes , Mapas de Interação de Proteínas , MicroRNAs/genética , MicroRNAs/metabolismo
2.
Science ; 382(6670): 600-606, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37917714

RESUMO

Sex determination in mammals depends on the differentiation of the supporting lineage of the gonads into Sertoli or pregranulosa cells that govern testis and ovary development, respectively. Although the Y-linked testis-determining gene Sry has been identified, the ovarian-determining factor remains unknown. In this study, we identified -KTS, a major, alternatively spliced isoform of the Wilms tumor suppressor WT1, as a key determinant of female sex determination. Loss of -KTS variants blocked gonadal differentiation in mice, whereas increased expression, as found in Frasier syndrome, induced precocious differentiation of ovaries independently of their genetic sex. In XY embryos, this antagonized Sry expression, resulting in male-to-female sex reversal. Our results identify -KTS as an ovarian-determining factor and demonstrate that its time of activation is critical in gonadal sex differentiation.


Assuntos
Ovário , Processos de Determinação Sexual , Proteínas WT1 , Animais , Feminino , Masculino , Camundongos , Ovário/crescimento & desenvolvimento , Processos de Determinação Sexual/genética , Proteína da Região Y Determinante do Sexo/genética , Proteína da Região Y Determinante do Sexo/metabolismo , Testículo/crescimento & desenvolvimento , Proteínas WT1/genética , Proteínas WT1/metabolismo , Isoformas de Proteínas
3.
BMC Genomics ; 24(1): 283, 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37237333

RESUMO

BACKGROUND: Testis is the only organ supporting sperm production and with the largest number of proteins and tissue-specific proteins in animals. In our previous studies, we have found that knockdown of ocnus (ocn), a testis-specific gene, resulted in much smaller testis with no germ cells in Drosophila melanogaster. However, the molecular consequences of ocn knockdown in fly testes are unknown. RESULTS: In this study, through iTRAQ quantitative proteomics sequencing, 606 proteins were identified from fly abdomens as having a significant and at least a 1.5-fold change in expression after ocn knockdown in fly testes, of which 85 were up-regulated and 521 were down-regulated. Among the differential expressed proteins (DEPs), apart from those proteins involved in spermatogenesis, the others extensively affected biological processes of generation of precursor metabolites and energy, metabolic process, and mitochondrial transport. Protein-protein interaction (PPI) analyses of DEPs showed that several kinases and/or phosphatases interacted with Ocn. Re-analyses of the transcriptome revealed 150 differential expressed genes (DEGs) appeared in the DEPs, and their changing trends in expressions after ocn knockdown were consistent. Many common down-regulated DEGs and DEPs were testis-specific or highly expressed in the testis of D. melanogaster. Quantitative RT-PCR (qRT-PCR) confirmed 12 genes appeared in both DEGs and DEPs were significantly down-regulated after ocn knockdown in fly testes. Furthermore, 153 differentially expressed phosphoproteins (DEPPs), including 72 up-regulated and 94 down-regulated phosphorylated proteins were also identified (13 phosphoproteins appeared in both up- and down-regulated groups due to having multiple phosphorylation sites). In addition to those DEPPs associated with spermatogenesis, the other DEPPs were enriched in actin filament-based process, protein folding, and mesoderm development. Some DEPs and DEPPs were involved in Notch, JAK/STAT, and cell death pathways. CONCLUSIONS: Given the drastic effect of the ocn knockdown on tissue development and testis cells composition, the differences in protein abundance in the ocn knockdown flies might not necessarily be the direct result of differential gene regulation due to the inactivation of ocn. Nevertheless, our results suggest that the expression of ocn is essential for Drosophila testis development and that its down-regulation disturbs key signaling pathways related to cell survival and differentiation. These DEPs and DEPPs identified may provide significant candidate set for future studies on the mechanism of male reproduction of animals, including humans.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Monoéster Fosfórico Hidrolases , Testículo , Animais , Masculino , Drosophila melanogaster/genética , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteômica/métodos , Sêmen , Testículo/crescimento & desenvolvimento , Proteínas de Drosophila/genética , Monoéster Fosfórico Hidrolases/genética
4.
Reprod Biol Endocrinol ; 21(1): 2, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36631813

RESUMO

BACKGROUND: Forty-six ,XY Differences/Disorders of Sex Development (DSD) are characterized by a broad phenotypic spectrum ranging from typical female to male with undervirilized external genitalia, or more rarely testicular regression with a typical male phenotype. Despite progress in the genetic diagnosis of DSD, most 46,XY DSD cases remain idiopathic. METHODS: To determine the genetic causes of 46,XY DSD, we studied 165 patients of Tunisian ancestry, who presented a wide range of DSD phenotypes. Karyotyping, candidate gene sequencing, and whole-exome sequencing (WES) were performed. RESULTS: Cytogenetic abnormalities, including a high frequency of sex chromosomal anomalies (85.4%), explained the phenotype in 30.9% (51/165) of the cohort. Sanger sequencing of candidate genes identified a novel pathogenic variant in the SRY gene in a patient with 46,XY gonadal dysgenesis. An exome screen of a sub-group of 44 patients with 46,XY DSD revealed pathogenic or likely pathogenic variants in 38.6% (17/44) of patients. CONCLUSION: Rare or novel pathogenic variants were identified in the AR, SRD5A2, ZNRF3, SOX8, SOX9 and HHAT genes. Overall our data indicate a genetic diagnosis rate of 41.2% (68/165) in the group of 46,XY DSD.


Assuntos
Aciltransferases , Disgenesia Gonadal 46 XY , Fatores de Transcrição SOXE , Desenvolvimento Sexual , Testículo , Ubiquitina-Proteína Ligases , Feminino , Humanos , Masculino , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase/genética , Aciltransferases/genética , Disgenesia Gonadal 46 XY/genética , Proteínas de Membrana/genética , Mutação , Fenótipo , Diferenciação Sexual , Desenvolvimento Sexual/genética , Fatores de Transcrição SOXE/genética , Testículo/crescimento & desenvolvimento , Ubiquitina-Proteína Ligases/genética
5.
Integr Zool ; 18(3): 543-551, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-35639924

RESUMO

The bicoid-related transcription factor 2 (Pitx2) plays a crucial role in the development of many organs and tissues by affecting the mitotic cell cycle. Postnatal testis development is related to mitosis and meiosis in multiple cell types, but the role of Pitx2 gene in seasonal inhibition of testicular development remains unknown in rodents. We analyzed PITX2 protein and Pitx2 mRNA expression features using both laboratory and wild male Rattus norvegicus caraco. In postnatal testicle of laboratory colony, we found that PITX2 was expressed in Leydig cells, pachytene spermatocytes, round spermatids, and elongating spermatids rather than spermatogonia and leptotene/zygotene spermatocytes. Pitx2b expression significantly increased along with the occurrence of pachytene spermatocytes and round spermatids, while decreased along with the processes of elongated spermatids. In wild male rats with similar testes weight, a significantly suppressed Pitx2b expression occurred with an active meiotic stage in the inhibited testes in autumn and winter, compared with the normally developing testes in spring and summer. These results indicate that Pitx2b expression suppression plays a crucial role in the seasonal inhibition of testis development.


Assuntos
Espermatogênese , Testículo , Animais , Masculino , Ratos , Estações do Ano , Espermátides/metabolismo , Espermatogênese/genética , Espermatogônias/metabolismo , Testículo/crescimento & desenvolvimento
6.
Anat Histol Embryol ; 52(2): 148-157, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36131530

RESUMO

This study was designed to monitor the morphological development of the reproductive tract of the Nubian bucks in relation to puberty. Thirty-two Nubain male kids were used in the study. The animals were slaughtered at intervals of 2 weeks starting from 1 day old up to 24 weeks of age. Tissue samples were obtained from the testes and processed for ultrastructural studies. The boundary tissue of the newly forming seminiferous tubule adhered closely to the basal lamina. It consisted of a single continuous layer of myoid cells, the outer surface of which was covered by scattered fibroblasts. The ultrastructural study of the boundary of the seminiferous tubule revealed that it consisted of three layers; inner fibrous, middle and outer cellular. The seminiferous tubules at week one were lined by two layers of epithelia; spermatogonia and Sertoli cells in the basal layer, and primary spermatocytes in the second layer. A gradual increase in the diameter of the tubules and epithelial height continued to increase with age. Furthermore, spermatocytes number showed an increase with age. In conclusion, based on the appearance of spermatozoa in the lumina of the seminiferous tubules, puberty age was achieved between weeks 18 and 20.


Assuntos
Cabras , Testículo , Testículo/crescimento & desenvolvimento , Testículo/ultraestrutura , Masculino , Animais , Maturidade Sexual , Microscopia Eletrônica de Transmissão/veterinária , Espermatogônias/ultraestrutura
7.
Front Endocrinol (Lausanne) ; 13: 906381, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35712256

RESUMO

Anti-Müllerian hormone (AMH) is a distinctive biomarker of the immature Sertoli cell. AMH expression, triggered by specific transcription factors upon fetal Sertoli cells differentiation independently of gonadotropins or sex steroids, drives Müllerian duct regression in the male, preventing the development of the uterus and Fallopian tubes. AMH continues to be highly expressed by Sertoli until the onset of puberty, when it is downregulated to low adult levels. FSH increases testicular AMH output by promoting immature Sertoli cell proliferation and individual cell expression. AMH secretion also showcases a differential regulation exerted by intratesticular levels of androgens and estrogens. In the fetus and the newborn, Sertoli cells do not express the androgen receptor, and the high androgen concentrations do not affect AMH expression. Conversely, estrogens can stimulate AMH production because estrogen receptors are present in Sertoli cells and aromatase is stimulated by FSH. During childhood, sex steroids levels are very low and do not play a physiological role on AMH production. However, hyperestrogenic states upregulate AMH expression. During puberty, testosterone inhibition of AMH expression overrides stimulation by estrogens and FSH. The direct effects of sex steroids on AMH transcription are mediated by androgen receptor and estrogen receptor α action on AMH promoter sequences. A modest estrogen action is also mediated by the membrane G-coupled estrogen receptor GPER. The understanding of these complex regulatory mechanisms helps in the interpretation of serum AMH levels found in physiological or pathological conditions, which underscores the importance of serum AMH as a biomarker of intratesticular steroid concentrations.


Assuntos
Hormônio Antimülleriano , Testículo , Androgênios/fisiologia , Hormônio Antimülleriano/fisiologia , Biomarcadores , Estrogênios/fisiologia , Hormônio Foliculoestimulante/fisiologia , Humanos , Masculino , Receptores Androgênicos/fisiologia , Testículo/crescimento & desenvolvimento , Testosterona/fisiologia
8.
Int. j. morphol ; 40(3): 619-626, jun. 2022. ilus, tab
Artigo em Inglês | LILACS | ID: biblio-1385649

RESUMO

SUMMARY: Recent studies have shown that homeobox proteins play an important role in the formation and development of tissues and organs in the embryonic period. In our study, the distribution of Dlx-5 and TLX proteins, which are members of the homeobox family, in the testis, epididymis and ductus deferens ducts of some cat breeds were investigated. For this purpose, in the study, 18 testes younger than six months (immature) and older than one year (mature) were examined under a light microscope using an immunohistochemical method (indirect streptavidin-biotin complex). While it was determined that Dlx-5 and TLX1 proteins were expressed at varying levels in cells in immature and mature cat testicles, epithelial cells of ductus epididymis and ductus deferens, and smooth muscle cells of ductus deferens, no differences were observed between cat breeds. Dlx-5 immunoreactivity was more intense in the testes, epididymis and deferens ducts of immature and mature compared to TLX1. These results suggested that both proteins play important roles in the development of male feline genital organs and in the secretion and differentiation of cells, and also further observation of Dlx-5 expression suggested that this protein may be more effective than TLX1 in testicular development and physiological processes.


RESUMEN: Estudios recientes han demostrado que las proteínas homeobox juegan un papel importante en la formación y desarrollo de tejidos y órganos en el período embrionario. En nuestro estudio, se investigó la distribución de las proteínas Dlx-5 y TLX, que son miembros de la familia homeobox, en los testículos, en el epidídimo y en los conductos deferentes de algunas razas de gatos. En el estudio fueron examinados, 18 testículos de animales menores de seis meses (inmaduros) y mayores de un año (maduros) bajo un microscopio óptico utilizando un método inmunohistoquímico (complejo indirecto de estreptavidina-biotina). Si bien se determinó que las proteínas Dlx-5 y TLX1 se expresaron en niveles variables en las células de los testículos de gatos inmaduros y maduros, las células epiteliales del epidídimo y del conducto deferente y las células del músculo liso del conducto deferente, no se observaron diferencias entre las razas de gatos. La inmunorreactividad de Dlx-5 fue más intensa en los testículos, epidídimo y conductos deferentes de gatos inmaduros y maduros en comparación con TLX1. Estos resultados sugieren que ambas proteínas tienen un rol importante en el desarrollo de los órganos genitales felinos masculinos y en la secreción y diferenciación de células, y también la observación de la expresión de Dlx-5 sugirió que esta proteína puede ser más efectiva que TLX1 en el desarrollo testicular y en los procesos fisiológicos.


Assuntos
Animais , Masculino , Gatos , Testículo/crescimento & desenvolvimento , Testículo/metabolismo , Proteínas de Homeodomínio/metabolismo , Imuno-Histoquímica
9.
Gene ; 823: 146393, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35248662

RESUMO

The Atlantic salmon (Salmo salar) is a globally important species for its value in fisheries and aquaculture, and as a research model. In order to characterise aspects of sex differentiation at the morphological and mRNA level in this species, the present study examined developmental changes in gonad morphology and gene expression in males and females between 0 and 79 days post hatch (dph). Morphological differentiation of the ovary (indicated by the formation of germ cell cysts) became apparent from 52 dph. By 79 dph, ovarian phenotype was evident in 100% of genotypic females. Testes remained in an undifferentiated-like state throughout the experiment, containing germ cells dispersed singularly within the gonadal region distal to the mesentery. There were no significant sex-related differences in gonad cross-section size, germ cell number or germ cell diameter during the experiment. The expression of genes involved in teleost sex differentiation (anti-müllerian hormone (amh), cytochrome P450, family 19, subfamily A, polypeptide 1a (cyp19a1a), forkhead box L2a (foxl2a), gonadal soma-derived factor (gsdf), r-spondin 1 (rspo1), sexually dimorphic on the Y chromosome (sdY)), retinoic acid-signalling (aldehyde dehydrogenase 1a2 (aldh1a2), cytochrome P450 family 26 a1 (cyp26a1), cytochrome P450 family 26 b1 (cyp26b1), t-box transcription factor 1 (tbx1a)) and neuroestrogen production (cytochrome P450, family 19, subfamily A, polypeptide 1b (cyp19a1b)) was investigated. Significant sex-related differences were observed only for the expression of amh, cyp19a1a, gsdf and sdY. In males, amh, gsdf and sdY were upregulated from 34, 59 and 44 dph respectively. In females, cyp19a1a was upregulated from 66 dph. Independent of sex, foxl2a expression was highest at 0 dph and had reduced âˆ¼ 47-fold by the time of morphological sex differentiation at 52 dph. This study provides new insights into the timing and sequence of some physiological changes associated with sex differentiation in Atlantic salmon. These findings also reveal that some aspects of the mRNA sex differentiation pathways in Atlantic salmon are unique compared to other teleost fishes, including other salmonids.


Assuntos
Proteínas de Peixes/genética , Ovário/crescimento & desenvolvimento , Salmo salar/crescimento & desenvolvimento , Testículo/crescimento & desenvolvimento , Animais , Feminino , Perfilação da Expressão Gênica/veterinária , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Ovário/química , Salmo salar/genética , Diferenciação Sexual , Transdução de Sinais , Testículo/química
10.
Int J Mol Sci ; 23(4)2022 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-35216156

RESUMO

Male pediatric survivors of cancers and bone marrow transplantation often require adjuvant chemoradiation therapy that may be gonadotoxic. The optimal methods to preserve fertility in these prepubertal males are still under investigation. This manuscript presents an in vivo experiment which involved transplantation of immature testicular tissues (ITT) from transgenic donor, to wild-type recipient mice. Donors and recipients were age-mismatched (from 20-week-old donors to 3-week-old recipients, and vice versa) and the transplantation sites involved the abdomen, skin of the head, back muscle, and scrotum. The application of poly-l-lactic acid (PLLA) scaffold was also evaluated in age-matched donors and recipients (both 3-weeks-old). To quantitively evaluate the process of spermatogenesis after ITT transplantation and scaffold application, bioluminescence imaging (BLI) was employed. Our result showed that ITT from 3-week-old mice had the best potential for spermatogenesis, and the optimal transplantation site was in the scrotum. Spermatogenesis was observed in recipient mice up to 51 days after transplantation, and up to the 85th day if scaffold was used. The peak of spermatogenesis occurred between the 42nd and 55th days in the scaffold group. This animal model may serve as a framework for further studies in prepubertal male fertility preservation.


Assuntos
Preservação da Fertilidade/métodos , Infertilidade Masculina/terapia , Espermatogênese , Testículo/citologia , Engenharia Tecidual/métodos , Animais , Infertilidade Masculina/etiologia , Masculino , Camundongos , Poliésteres/química , Lesões Experimentais por Radiação/complicações , Testículo/crescimento & desenvolvimento , Testículo/fisiologia , Tecidos Suporte/química
11.
Sci Rep ; 12(1): 430, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-35017550

RESUMO

Obesity can disturb spermatogenesis and subsequently affect male fertility and reproduction. In our study, we aim to elucidate at which cellular level of adult spermatogenesis the detrimental effects of obesity manifest. We induced high fat diet (HFD) obesity in low-density lipoprotein receptor knock-out Leiden (Ldlr-/-.Leiden) mice, and studied the morphological structure of the testes and histologically examined the proportion of Sertoli cells, spermatocytes and spermatids in the seminiferous tubules. We examined sperm DNA damage and chromatin condensation and measured plasma levels of leptin, testosterone, cholesterol and triglycerides. HFD-induced obesity caused high plasma leptin and abnormal testosterone levels and induced an aberrant intra-tubular organisation (ITO) which is associated with an altered spermatids/spermatocytes ratio (2:1 instead of 3:1). Mice fed a HFD had a higher level of tubules in stages VII + VIII in the spermatogenic cycle. The stages VII + VII indicate crucial processes in spermatogenic development like initiation of meiosis, initiation of spermatid elongation, and release of fully matured spermatids. In conclusion, HFD-induced obese Ldlr-/-.Leiden mice develop an aberrant ITO and alterations in the spermatogenic cycle in crucial stages (stages VII and VII). Thereby, our findings stress the importance of lifestyle guidelines in infertility treatments.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Lipoproteínas LDL/genética , Obesidade/fisiopatologia , Espermátides/crescimento & desenvolvimento , Espermatogênese , Animais , Colesterol/sangue , Modelos Animais de Doenças , Humanos , Leptina/sangue , Lipoproteínas LDL/deficiência , Masculino , Meiose , Camundongos , Camundongos Knockout , Obesidade/sangue , Obesidade/etiologia , Espermátides/metabolismo , Espermatócitos/crescimento & desenvolvimento , Espermatócitos/metabolismo , Testículo/citologia , Testículo/crescimento & desenvolvimento , Testículo/metabolismo , Testosterona/sangue
12.
Food Chem Toxicol ; 160: 112803, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34990788

RESUMO

Nanoplastics have raised considerable concerns since their ubiquity in the environment and potential hazard to health. It has been proven that polystyrene nanoparticles (PS-NPs) can be maternally transferred to the offspring. In this study, mice were exposed gestationally and lactationally to PS-NPs (size 100 nm) at different doses (0.1, 1 and 10 mg/L) to investigate the trans-generational poisonousness. Our data illustrated that maternal PS-NPs exposure in pregnancy and lactation resulted in a decline in birth and postnatal body weight in offspring mice. Furthermore, high-dose PS-NPs reduced liver weight, triggered oxidative stress, caused inflammatory cell infiltration, up-regulated proinflammatory cytokine expression, and disturbed glycometabolism in the liver of male offspring mice. In addition, pre- and postnatal PS-NPs exposure diminished testis weight, disrupted seminiferous epithelium and decreased sperm count in mouse offspring. Moreover, PS-NPs induced testicular oxidative injury, as presented by increased malondialdehyde generation and altered superoxide dismutase and catalase activities in the testis of offspring mice. These findings declared that maternal exposure to PS-NPs in pregnancy and lactation can cause hepatic and testicular toxicity in male mouse pups, which put forward new understanding into the detrimental effects of nanoplastics on mammalian offspring.


Assuntos
Fígado/efeitos dos fármacos , Exposição Materna/efeitos adversos , Microplásticos/toxicidade , Poliestirenos/toxicidade , Efeitos Tardios da Exposição Pré-Natal/etiologia , Testículo/efeitos dos fármacos , Animais , Citocinas/genética , Citocinas/metabolismo , Feminino , Humanos , Recém-Nascido , Lactação , Fígado/crescimento & desenvolvimento , Fígado/metabolismo , Masculino , Camundongos , Nanopartículas/toxicidade , Tamanho do Órgão/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Linhagem , Gravidez , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Testículo/crescimento & desenvolvimento , Testículo/metabolismo
13.
Artigo em Inglês | MEDLINE | ID: mdl-34871860

RESUMO

BACKGROUND: Ethanol (EtOH) exposure impairs, but docosahexaenoic acid (DHA) supports testis functions. This study investigated whether dietary DHA and prenatal EtOH exposure affected fatty acid profiles equally in immature and mature testis during developmental stages. METHODS: Female rats were exposed to ± EtOH (3g/kg BW, twice a day via gavage) throughout pregnancy, while consuming a diet supplemented ± DHA (1.4%, w/w). Pups were continued on their mother's diet after weaning with testes collected for fatty acid analysis at different stages of reproductive development, at gestational day 20 (GD20) and postnatal day (PD) 4, 21, 49, and 90, to present fetal, neonatal, weaning, prepubertal and adult stages, respectively. RESULTS: Regardless of EtOH exposure, dietary DHA significantly increased in testis DHA at all ages, with testis at weaning and prepuberty being more responsive to the diet (p<0.0002). Immature testis at GD20 and PD4 contained more DHA than n-6 docosapentaenoic acid (n-6 DPA) compared to mature testis while being well responsive to the maternal DHA diet through gestation and lactation. The level of n-6 very long chain fatty acids and (VLCFA) and n-6 DPA, distinctively increased from weaning and prepuberty, respectively, and were not reduced by the DHA diet at prepuberty and adulthood. Prenatal EtOH minimally affected testis fatty acids during development. CONCLUSION: Immature and mature testis responds differently to dietary DHA. The age around sexual maturity might be a critical time for dietary intervention as testis was more responsive to diet at this time point. The increase in DPA and n-6 VLCFA in matured testis while not affected by dietary DHA, indicates their critical roles in male reproductive function in rodents.


Assuntos
Dieta/métodos , Suplementos Nutricionais , Ácidos Docosa-Hexaenoicos/administração & dosagem , Ácidos Docosa-Hexaenoicos/metabolismo , Etanol/administração & dosagem , Desenvolvimento Fetal/efeitos dos fármacos , Maturidade Sexual/efeitos dos fármacos , Testículo/embriologia , Testículo/crescimento & desenvolvimento , Animais , Ácidos Graxos Insaturados/metabolismo , Feminino , Idade Gestacional , Lactação , Masculino , Gravidez , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Testículo/metabolismo , Desmame
14.
Neuropeptides ; 91: 102215, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34883413

RESUMO

QRFP, an orexigenic neuropeptide, binds to its cognate receptor GPR103 and regulates various biological functions. We have recently shown that QRFP and its receptor are present in mice testes and that their expression is high during early postnatal period. The present study aimed to investigate the effect of sustained high level of QRFP on Sertoli cells proliferation and differentiation and to relate these events with germ cell differentiation and lumen formation in the seminiferous tubules in mice testes during prepubertal period. QRFP was injected intraperitoneally to male mice from postnatal day 5 to 16. Morphometric analysis and various markers related to Sertoli cell maturation (WT1, p27kip1, AMH, AR and CYP19A1) and germ cell proliferation and differentiation (PCNA, GDNF and c-Kit) were evaluated. QRFP administration caused an early lumen formation in the seminiferous tubules in testis of treated mice. Further, there was a significant increase in p27kip1 expression and a marked decrease in AMH expression in QRFP-treated mice compared to controls. However, no appreciable change was noted in AR expression in treated mice. QRFP treatment also caused an increase in c-Kit expression in treated mice compared to controls, suggesting an accelerated spermatogonial differentiation in testis of QRFP-treated mice. Taken together, the present results suggest that the prolonged high level of QRFP increases Sertoli cell maturation, which, in turn, plays a contributory role in increasing the pace of germ cell differentiation and formation of lumen in the seminiferous tubules.


Assuntos
Neuropeptídeos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Células de Sertoli/metabolismo , Testículo/metabolismo , Animais , Proliferação de Células/fisiologia , Masculino , Camundongos , Células de Sertoli/citologia , Espermatogônias/citologia , Espermatogônias/metabolismo , Testículo/citologia , Testículo/crescimento & desenvolvimento
15.
Artigo em Inglês | MEDLINE | ID: mdl-34763077

RESUMO

MicroRNAs (miRNAs) contribute to gonadal development in animals. However, there is little information about miRNA regulation function involved in gonadal development in fish. Our group previously identified sex-related miRNAs of Chinese tongue sole (Cynoglossus semilaevis) during sex determination and differentiation by small RNA sequencing. In the present study, we characterized ssa-mir-196a-4 and its expression in testis and verified its interaction with lgr8. miRNA ssa-mir-196a-4 precursor was predicted to have a typical hairpin structure and highly conserved among various fish species. Fluorescence in situ hybridization (FISH) of ssa-mir-196a-4 in the testis of Chinese tongue sole showed that it is mainly expressed in the cytoplasm of Sertoli cells. We determined that ssa-mir-196a-4 interacted with lgr8 by bioinformatics analysis using miRanda software. According to the dual-luciferase gene reporter assay, lgr8 is a direct target of ssa-mir-196a-4. Overexpression of ssa-mir-196a-4 in the cells of the testis cell line of Chinese tongue sole decreased the expression levels of lgr8 messenger RNA (mRNA) and protein by targeting its coding sequence (CDS) region. These results suggest that ssa-mir-196a-4 acts as a post-transcriptional regulator of lgr8 and plays an important role in developing testes of Chinese tongue sole.


Assuntos
Proteínas de Peixes/genética , Peixes/genética , MicroRNAs , Receptores Acoplados a Proteínas G/genética , Testículo , Animais , China , Hibridização in Situ Fluorescente , Masculino , MicroRNAs/genética , Testículo/crescimento & desenvolvimento
16.
Endocrinology ; 163(1)2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34662386

RESUMO

The sex-determining region of the Y chromosome, Sry/SRY, is an initiation factor for testis development in both humans and mice. Although the functional compatibility between murine SRY and human SRY was previously examined in transgenic mice, their equivalency remains inconclusive. Because molecular interaction and timeline of mammalian sex determination were mostly described in murine experiments, we generated a mouse model in which Sry was substituted with human SRY to verify the compatibility. The mouse model had the human SRY open reading frame at the locus of murine Sry exon 1-Sry(SRY) mice-and was generated using the CRISPR/Cas9 system. The reproductive system of the mice was analyzed. The expression of human SRY in the fetal gonadal ridge of Sry(SRY) mice was detected. The external and internal genitalia of adult Sry(SRY) mice were similar to those of wild-type females, without any significant difference in anogenital distance. Sry(SRY) mice obtained gonads, which were morphologically considered as ovaries. Histological analysis revealed that the cortical regions of gonads from adult Sry(SRY) mice contained few follicles. We successfully replaced genes on the Y chromosome with targeted genome editing using the CRISPR/Cas9 system. Because the Sry(SRY) XY mice did not develop testis, we concluded that human SRY was insufficient to drive testis development in mouse embryos. The difference in response elements and lack of glutamine-rich domains may have invalidated human SRY function in mice. Signal transduction between Sry/SRY expression and Sox9/SOX9 activation is possibly organized in a species-specific manner.


Assuntos
Proteína da Região Y Determinante do Sexo/biossíntese , Testículo/crescimento & desenvolvimento , Testículo/metabolismo , Animais , Sistemas CRISPR-Cas , Éxons , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Genótipo , Gônadas/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Nucleares/metabolismo , Ovário/metabolismo , Fenótipo , Domínios Proteicos , Processos de Determinação Sexual , Diferenciação Sexual , Proteína da Região Y Determinante do Sexo/genética , Transdução de Sinais , Testículo/fisiologia , Transgenes
17.
Gene ; 809: 146023, 2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-34673205

RESUMO

Steroidogenic factor 1 (sf1) (officially designated as nuclear receptor subfamily 5 group A member 1 [NR5A1]) is an important regulator of gonad development. Previous studies on sf1 in fish have been limited to cloning and in vitro expression experiments. In this study, we used antisense RNA to down-regulate sf1 transcription and sf1 protein expression. Down-regulation of sf1 resulted in an increase in body weight and inhibition of gonadal development in both males and females with the consequent lower gonadosomatic index compared to fish in the control group. Hematoxylin-eosin staining of the gonads of fish with down-regulated sf1 revealed fewer seminiferous tubules and sperm in the testis of males. In addition, the oocytes were mainly stage II and many of them were atretic follicle. We conducted comparative transcriptome and proteome analyses between the sf1-down-regulated group and the control group. These analyses revealed multiple gene-protein pairs and pathways involved in regulating the observed changes, including 44 and 74 differently expressed genes and proteins in males and females, respectively. The results indicated that dysfunctional retinal metabolism and fatty acid metabolism could be causes of the observed weight gain and gonad abnormalities in sf1-down-regulated fish. These findings demonstrate the feasibility of using antisense RNA for gene editing in fish. This methodology allows the study gene function in species less amenable to gene editing as for example aquaculture species with long life cycles.


Assuntos
Peso Corporal/genética , Ciclídeos/genética , Ovário/crescimento & desenvolvimento , Fator Esteroidogênico 1/genética , Testículo/crescimento & desenvolvimento , Animais , Aquicultura , Ciclídeos/crescimento & desenvolvimento , Regulação para Baixo , Feminino , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Regulação da Expressão Gênica , Masculino , RNA Antissenso , Fator Esteroidogênico 1/metabolismo , Transfecção
18.
Mol Genet Genomics ; 297(1): 113-123, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34854981

RESUMO

In mammals, Yin Yang 1 (YY1), a pervasively expressed transcription factor related to many biological processes as an activator or inhibitor of the transcription of various genes, plays a critical role in the development of male gonads and spermatogenesis. Although the role of YY1 on the development of male gonads and spermatogenesis in mammals has been reported, its function on chicken testis are yet to be clarified. In this study, we used immunofluorescence analysis to investigate the location of YY1 in chicken testis. In embryo testis, YY1 was detected in spermatogonia and Sertoli cells, while in adult testis, YY1 was shown to be expressed in spermatogenic cells and Sertoli cells, but not in spermatozoa. Furthermore, we investigated the regulatory functions of YY1 in chicken testicular Sertoli cells by combining overexpression with RNA-sequencing. Overexpression of YY1 in Sertoli cells revealed a total of 2955 differentially expressed genes involved in various biological processes, such as male gonad development and seminiferous tubule development. Overexpression of YY1 also caused significant differences in the expression of the androgen receptor gene and the inhibin ßA gene, two major genes involved in the regulation of spermatogonia in Sertoli cells. These observations indicate that YY1 may regulate the development and function of the gonads by affecting the secretion of cytokines and hormones in Sertoli cells to mediate the production and differentiation of spermatogonia.


Assuntos
Galinhas , Testículo/metabolismo , Fator de Transcrição YY1/genética , Animais , Diferenciação Celular/genética , Embrião de Galinha , Galinhas/genética , Galinhas/crescimento & desenvolvimento , Galinhas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Espermatogênese/genética , Espermatogônias/fisiologia , Espermatozoides/fisiologia , Testículo/embriologia , Testículo/crescimento & desenvolvimento , Distribuição Tecidual , Fator de Transcrição YY1/metabolismo
19.
Mol Cell Endocrinol ; 541: 111526, 2022 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-34856344

RESUMO

Testicular aromatase catalyzes the synthesis of estradiol, which contributes to regulation of porcine Sertoli cell proliferation and postpubertal maintenance of Sertoli cell numbers. Although aromatase enzymatic activity decreases with age and is persistently reprogrammed by prepubertal treatment with the aromatase inhibitor letrozole, the molecular bases for regulation have not been identified. DNA methylation was examined as a potential regulatory mechanism using DNA from Leydig cells isolated from 16-, 40-, and 68-week-old boars and from 68- week-old littermates treated with the aromatase inhibitor, letrozole. Methylation levels of individual CpG dinucleotides located in the distal untranslated exon 1 of the relevant aromatase encoding gene, CYP19A3, were quite high in Leydig cell DNA, and increased further with maturity of boar (P < 0.05), while aromatase activity and transcript abundance decreased more than two-fold. However, reduced aromatase activity following letrozole treatment was not accompanied by altered DNA methylation. Testicular expression of miR378 was altered by prepubertal treatment with letrozole. The data provide evidence for two different epigenetic mechanisms that regulate aromatase expression and enzymatic activity in the boar testis.


Assuntos
Aromatase/genética , Epigênese Genética/fisiologia , Suínos/genética , Testículo/metabolismo , Animais , Animais Recém-Nascidos , Aromatase/metabolismo , Inibidores da Aromatase/farmacologia , Células Cultivadas , Epigênese Genética/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Letrozol/farmacologia , Células Intersticiais do Testículo/efeitos dos fármacos , Células Intersticiais do Testículo/metabolismo , Masculino , Células de Sertoli/efeitos dos fármacos , Células de Sertoli/metabolismo , Suínos/crescimento & desenvolvimento , Testículo/efeitos dos fármacos , Testículo/crescimento & desenvolvimento
20.
J Anim Physiol Anim Nutr (Berl) ; 106(2): 266-275, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34212433

RESUMO

The present work aimed to explore the influence and underlying mechanisms involving arginine in testicular development in boars. To this end, thirty 30-day-old male Duroc piglets (7.00 ± 0.30 kg) were randomly sorted into two groups, maintained on either a basal diet (CON, n = 15) or a diet supplemented with 0.8% arginine (ARG, n = 15). Blood and testicular samples were collected during the experimental period to analyse amino acid composition and arginine metabolite levels. The results showed that dietary supplementation with arginine increased number of spermatogonia and height of the seminiferous epithelium (p < 0.05). Sperm density, total number and effective number of sperm of the boars in the ARG group increased significantly compared with those in the CON group (p < 0.05). Although arginine supplementation did not affect plasma amino acid levels, testicular arginine levels in 150-day-old boars exhibited a significant increase (p < 0.05). The level of serum nitric oxide (NO) and activity of nitric oxide synthase (NOS) also increased in 150-day-old boars in the ARG group (p < 0.05). Interestingly, dietary supplementation with arginine increased testicular levels of putrescine in 150-day-old boars (p < 0.05). These results indicated that arginine supplementation increased serum NO levels and testicular arginine and putrescine abundance, thereby improving testicular development and semen quality in boars.


Assuntos
Arginina , Análise do Sêmen , Testículo , Ração Animal/análise , Animais , Arginina/análise , Arginina/sangue , Arginina/farmacologia , Suplementos Nutricionais , Masculino , Óxido Nítrico/análise , Óxido Nítrico/sangue , Putrescina/análise , Putrescina/sangue , Análise do Sêmen/veterinária , Espermatogênese/efeitos dos fármacos , Suínos , Testículo/química , Testículo/efeitos dos fármacos , Testículo/crescimento & desenvolvimento , Testículo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...